Logistic regression error‐in‐covariate models for longitudinal high‐dimensional covariates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Use SAS for GMM Logistic Regression Models for Longitudinal Data with Time-Dependent Covariates

In longitudinal data, it is important to account for the correlation due to repeated measures and timedependent covariates. Generalized method of moments can be used to estimate the coefficients in longitudinal data, although there are currently limited procedures in SAS ® to produce GMM estimates for correlated data. In a recent paper, Lalonde, Wilson, and Yin provided a GMM model for estimati...

متن کامل

Misclassification in Logistic Regression with Discrete Covariates

We study the effect of misclassification of a binary covariate on the parameters of a logistic regression model. In particular we consider 2 2 2 tables. We assume that a binary covariate is subject to misclassification that may depend on the observed outcome. This type of misclassification is known as (outcome dependent) differential misclassification. We examine the resulting asymptotic bias o...

متن کامل

Logistic regression with outcome and covariates missing separately or simultaneously

Estimation methods are proposed for fitting logistic regression in which outcome and covariate variables are missing separately or simultaneously. One of the two proposed estimators is an extension of the validation likelihood estimator of BreslowandCain (1988). The other is a joint conditional likelihood estimator that uses both validation and nonvalidation data. Large sample properties of the...

متن کامل

Inference using conditional logistic regression with missing covariates.

When there are many nuisance parameters in a logistic regression model, a popular method for eliminating these nuisance parameters is conditional logistic regression. Unfortunately, another common problem in a logistic regression analysis is missing covariate data. With many nuisance parameters to eliminate and missing covariates, many investigators exclude any subject with missing covariates a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stat

سال: 2019

ISSN: 2049-1573,2049-1573

DOI: 10.1002/sta4.246